Download Copy a link to this page Cite this record

Weir, B.S.; Johnston P.R.; Damm, U. 2012: The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115-180.

Reference record
Names_Fungi record source
Is NZ relevant
This record has descriptions
Show more

Click to collapse Details Info

Weir, B.S.; Johnston P.R.; Damm, U. 2012: The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115-180.
10.3114/sim0011
Article

Click to collapse Taxonomic concepts Info

Click to collapse Descriptions Info

Other specimen examined: Japan, on Pyrus pyrifolia, coll. H. Ishii Nashi-10 (ICMP 18686).
Colonies grown from single conidia on Difco PDA 30–35 mm diam after 10 d. Aerial mycelium sparse, cottony, white, surface of agar uniformly pale orange (7A5) towards centre, more or less colourless towards edge, conidia not associated with well differentiated acervuli and no masses of conidial ooze. In reverse pale orange towards centre. Conidiogenous cells arising haphazardly from dense, tangled hyphae across agar surface, short-cylindric with a poorly differentiated conidiogenous locus. Conidia often germinating soon after release, sometimes forming appressoria, so forming a thin, compact, layer of germinated, septate conidia, germ tubes, and appressoria across the central part of the colony surface. Conidia (12–)14–15(–16.5) × (5–)6– 6.5(–7.5) μm (av. 14.5 × 6.1 μm, n = 53), cylindric with broadly rounded ends. Appressoria 6–10 μm diam, subglobose or with a few broad lobes.
Geographic distribution and host range: known from only two collections, one from Pyrus pyrifolia from Japan, the other from Persea americana from Israel.
Genetic identification: ITS sequences are insufficient to separate C. aenigma from C. alienum and some C. siamense isolates. These taxa are best distinguished using TUB2 or GS. Notes: Although the biology of this species is more or less unknown, it has been found in two widely separate regions and is, therefore, likely to be found to be geographically widespread in the future. Genetically distinct within the Musae clade, this species has a distinctive appearance in culture with sparse, pale aerial mycelium and lacking differentiated acervuli.
Holotype: Israel, on Persea americana, coll. S. Freeman Avo-37-4B, PDD 102233; ex-holotype culture ICMP 18608.
Colonies grown from single conidia on Difco PDA 25–35 mm diam after 10 d, aerial mycelium sparse, cottony, white, surface of colony with numerous acervuli, some with dark bases, with orange conidial ooze; in reverse more or less colourless apart from the dark acervuli and orange conidial masses showing through the agar. Conidia (14–)17–18.5(–20) × 4(–5) μm (av. 17.6 × 4.1 μm, n = 30), cylindric, straight, tapering slightly near both ends. Appressoria mostly elliptic to subfusoid, deeply lobed. Perithecia not seen.
Geographic distribution and host range: Reported only from USA, pathogenic to Aeschynomeme.
Genetic identification: ITS sequences do not distinguish C. aeschynomenes from C. fructicola. These taxa are best distinguished using TUB2, GAPDH, or GS. Notes: Colletotrichum gloeosporioides “f. sp. aeschynomenes” has been used to refer to isolates pathogenic to Aeschynomene virginica, later developed as the weed biocontrol agent Collego (references in Ditmore et al. 2008). It has also been reported from a range of other hosts (TeBeest 1988). Our analyses, based on a single, authentic strain of C. gloeosporioides “f. sp. aeschynomenes” (TeBeest 3.1.3, apparently the source of the single spore isolate originally used in the development of Collego, Ditmore et al. (2008)) show it to be genetically distinct within the Musae clade of the C. gloeosporioides complex. Genetically close to the geographically and biologically diverse C. siamense, it differs morphologically from this species in having slightly longer and narrower conidia which taper slightly toward the ends, and in having larger, strongly lobed appressoria. An isolate deposited as C. gloeosporioides f. sp. aeschynomenes in CBS (CBS 796.72) by G.E. Templeton, one of the early C. gloeosporioides f. sp. aeschynomenes researchers (Daniel et al. 1973), is genetically distinct to TeBeest 3.1.3 and has been identified by Damm et al. (2012a, this issue) as C. godetiae, a member of the C. acutatum complex. The strain that we examined (Te Beest 3.1.3) matches genetically another strain often cited in the C. gloeosporioides f. sp. aeschynomenes literature (Clar- 5a = ATCC 96723) (GenBank JX131331). It is possible that two distinct species, both highly pathogenic to Aeschynomene in Arkansas, have been confused. A survey of additional isolates of Colletotrichum highly virulent to Aeschynomene in Arkansas would clarify the interpretation of the past literature on this pathogen. For example, C. gloeosporioides “f. sp. aeschynomenes” was initially reported as specific to Aeschynomene virginica (Daniel et al. 1973), while later studies reported isolates putatively of the same taxon, to have a wider host range (TeBeest 1988). Cisar et al. (1994) reported fertile ascospores from crosses between isolates identified as C. gloeosporioides “f. sp. aeschynomenes” and isolates of C. gloeosporioides “f. sp. jussiaeae”, a pathogen of Jussiaea decurrens. The position of C. gloeosporioides “f. sp. jussiaeae” within our phylogeny is not known, but these taxa could prove useful for better understanding of the biological differences between phylogenetically defined species of Colletotrichum.
Holotype: USA, Arkansas, on Aeschynomene virginica stem lesion, coll. D. TeBeest 3-1-3, PDD 101995; ex-type culture ICMP 17673 = ATCC 201874.
Other specimen examined: Nigeria, Kpite, on Dioscorea alata leaf, coll. M.M. Abang Cg25, 2001 (ICMP 18122).
Colonies grown from single conidia on Difco PDA 30–40 mm diam after 10 d. Ex-holotype culture looks “stale”, with low, felted, dense, pale grey aerial mycelium, orange agar surface showing through near the margin, scattered dark based acervuli with orange conidial masses near centre; in reverse deep pinkish orange with patches of grey pigment near centre. ICMP 18122 with aerial mycelium sparse, colony surface with numerous discrete, dark-based acervuli with bright orange conidial ooze, margin of colony feathery; in reverse irregular sectors with pale grey pigment within the grey, otherwise colourless apart from the colour of the acervuli and conidial masses. Conidia (14.5−)18–19.5(−23.5) × (4.5−)5−5.5(−6.5) μm (av. 18.9 × 5.2 μm, n = 40), cylindric, straight, ends rounded, a few tapering towards the basal end. Appressoria mostly simple, elliptic to fusoid in shape, sometime developing broad, irregular lobes, about 7–13.5 × 5–10.5 μm. perithecia not seen.
Geographic distribution and host range: Known only from yam (Dioscorea alata), from Nigeria, Barbardos, India, Guadeloupe.
Genetic identification: ITS sequences distinguish C. alatae from all other taxa. Notes: Anthracnose diseases of yam are found throughout the regions where the host is grown (e.g. Winch et al. 1984, Prasad & Singh 1960, Singh et al. 1966, Abang et al. 2002, 2003). Isolates from diseased yam leaves are morphologically (Winch et al. 1984) and genetically (Abang et al. 2002) diverse. Both of these authors used a broad species concept, grouping all isolates sourced from yam under the single name C. gloeosporioides. In this paper we accept part of that diversity to represent a distinct species, newly described here as C. alatae. The type specimen of C. alatae matches the SGG (slow growing grey) group of Abang et al. (2002), the group that these authors found to be more pathogenic to yam than the other morphological and genetic groups they recognised within C. gloeosporioides. In addition to the Nigerian isolates of Abang et al. (2002), isolates from yam from Barbados (isolates SAS8 and SAS9 from Sreenivasaprasad et al. 1996), Guadeloupe (GenBank accession GQ495617) and India (CBS 304.67 and GenBank accession FJ940734) belong in this clade, while no isolates from other hosts have been found. Other isolates from yam that we sequenced included some representing the Abang et al. (2002) FGS group (Abang Cg22 = ICMP 18120, Abang Cg13 = ICMP 18125, Abang CgS6 = ICMP 18117, Abang CgS2 = ICMP 18121), a group distinguished from the highly pathogenic SGG isolates by faster growth in culture and shorter conidia (Abang et al. 2002). Two of these isolates (ICMP 18120, 18125) genetically match C. fructicola, the others match C. siamense. Several names have been applied to Colletotrichum specimens from anthracnose of yam stems and leaves, including Gloeosporium pestis Massee, G. “dioscoreae” Sawada (nom. inval.; no Latin diagnosis), Colletotrichum dioscoreae Av.-Saccá 1917, and C. dioscoreae Tehon 1933. In addition, Gloeosporium bomplandii Speg. was described from a host doubtfully identified as Dioscorea. Because of the broad genetic diversity of Colletotrichum spp. associated with diseased yam, the lack of cultures from any of these early type specimens, and the uncertainty to which part of the yam-associated diversity they correspond, we have chosen not to use these names for our newly recognised, yam-specialised pathogen. Whether the postharvest tuber rot referred to as dead skin disease of yam (Abang et al. 2003, Green & Simmons 1994) is caused by the same Colletotrichum population as associated with diseased foliage is not known.
Holotype: India, Rajasthan, Udaipur, on Dioscorea alata leaves and stems, coll. K.L. Kothari & J. Abramham, 1959, CBS H-6939; extype culture and putatively authentic isolate of C. gloeosporioides f. alatae CBS 304.67 = ICMP 17919.
Other specimens examined: Australia, New South Wales, Murwillumbah, on Persea americana (DAR 37820 = IMI 313842 = ICMP 18691). New Zealand, Auckland, Oratia, Shaw Rd, on Malus domestica fruit rot, coll. P.R. Johnston C938.5, 14 Apr. 1988 (ICMP 18725); Bay of Plenty, Katikati, on Diospyros kaki ripe fruit rot, coll. M.A. Manning, Jun. 1989 (ICMP 17972); Bay of Plenty, Te Puke, on Persea americana ripe fruit rot, coll. W.F.T. Hartill, 2 Feb. 1988 (ICMP 18704); Bay of Plenty, Te Puna, on Persea americana ripe fruit rot, coll. W.F.T. Hartill, 25 Jan. 1988 (ICMP 18703); Bay of Plenty, on Persea americana ripe fruit rot, coll. W.F.T. Hartill, Feb. 1991 (ICMP 18621); Waikato, Hamilton, on Malus domestica fruit rot, coll. G.I. Robertson, May 1988 (ICMP 12068).
Colonies grown from single conidia on Difco PDA 85 mm diam after 10 d. Colonies often with distinct sectors; some with cottony, grey aerial mycelium with numerous dark-based acervuli and orange conidial ooze visible through the mycelium; others with dense, cottony to felted mycelium, fewer acervuli and these hidden by the dense mycelium. In reverse, irregular dark grey patches and sectors masking the pale orange coloured pigmentation. ICMP 18691 looks “stale” with slow growth, dense, pale aerial mycelium and sparse conidial production and no perithecia. Conidia (12.5–) 15.5–17.5(–22) × (3–)5–5.5(–6) μm (av. 16.5 × 5.0 μm, n = 70), cylindric with broadly rounded ends. Appressoria mostly simple, globose to short-cylindric, a few with broad, irregular lobes; ICMP 18691 has mostly lobed appressoria. Perithecia forming in most cultures after about 10 d, dark-walled, globose with short, narrow ostiolar neck. Ascospores (14.5–)17–19.5(–22) × 4–5(–6) μm (av. 18.1 × 4.6 μm, n = 55), cylindric, curved, tapering slightly to each end.
Geographic distribution and host range: Known only from Australia and New Zealand, common on a wide range of introduced fruit crops.
Genetic identification: ITS sequences do not separate C. alienum from some C. siamense isolates. These taxa are best distinguished using CAL or GS. Notes: Common on commercial fruit crops, this fungus was referred to as C. gloeosporioides Group A by Johnston & Jones (1997) and Johnston et al. (2005).
Holotype: New Zealand, Auckland, Kumeu research orchard, Malus domestica fruit rot, coll. P.R. Johnston C824, 14 Aug. 1987, PDD 101996; ex-type culture ICMP 12071.
New Zealand, Auckland, Freemans Bay, on Vitex lucens fruit, coll. P.R. Johnston C1252.1, 26 Aug. 2007 (ICMP 18532; PDD 92930). on Berberis sp. leaf spot, coll. N. Waipara C69 (ICMP 18734); Auckland, Mangere, on Berberis glaucocarpa leaf spot, coll. N. Waipara C7, Jun. 2007 (ICMP 18528); Auckland, Waitakere Ranges, on Kunzea ericoides leaf endophyte, coll. S. Joshee 7Kun3.5, Jan. 2004 (ICMP 17324); Auckland, Waitakere Ranges, on Prumnopitys ferruginea leaf endophyte, coll. S. Joshee 8Mb5.1, Jan. 2004 (ICMP 18533); Auckland, Waitakere Ranges, on Dacrycarpus dacrydioides leaf endophyte, coll. S. Joshee 5K5.9, Jan. 2004 (ICMP 18535); Auckland, St Johns, Auckland University campus, on Coprosma sp. incubated berries, coll. B. Weir C1282.1, 30 Apr. 2009 (ICMP 18577); Auckland, Mt Albert, on Acmena smithii lesions fruit, coll. P.R. Johnston C847, 9 Sep. 1987 (ICMP 18529); Auckland, Glen Innes, Auckland University campus, on Coprosma sp. incubated berries, coll. B. Weir C1282.3, 30 Apr. 2009 (ICMP 18536); Auckland, Orakei, on Ligustrum lucidum leaf spot, coll. C. Winks & D. Than M136.3 (ICMP 18748); Auckland, Waitakere Ranges, on Podocarpus totara leaf endophyte, coll. S. Joshee 3T5.6, Jan. 2004 (ICMP 17326); Auckland, Waitakere Ranges, Huia, on Geniostoma ligustrifolium leaf endophyte, coll. S. Bellgard M128, 8 Jul. 2010 (ICMP 18540); Auckland, Waitakere Ranges, Huia, on Coprosma sp. rotten berry, coll. S. Bellgard M130-2, 8 Jul. 2010 (ICMP 18541); Auckland, Waiheke Island, Palm Beach, on Meryta sinclairii leaf spot, coll. P.R. Johnston C1310.1, 21 Mar. 2010 (PDD 99186; ICMP 18742); Auckland, Tiritiri Island, on Dysoxylum spectabile fruit rot, coll. P.R Johnston C1220, 12 Feb. 1997 (PDD 67042; ICMP 18740); Northland, Whangaruru, on Vitex lucens fruit rot, coll. P.R. Johnston C880.1, L. Brako, P. Berry, 28 Jan. 1988 (PDD 48408; ICMP 18530); on Berberis sp. leaf spot, coll. N. Waipara C77 (ICMP 18735), on Lonicera japonica leaf spot, coll. N. Waipara J3 (ICMP 18736); Wellington, Waikanae, on Coprosma sp. leaf, coll. B. Weir C1285, 14 May 2009 (ICMP 18548); Auckland, Wenderholm Regional Park, on Melicytus ramiflorus leaf endophyte, coll. G.C. Carroll MELRA, 16 Sep. 2009 (ICMP 18543).
Colonies grown from single conidia on Difco PDA 70–85 mm diam after 10 d, several isolates with restricted growth, 50–55 mm diam with an irregularly scalloped margin. Aerial mycelium cottony to dense cottony, tufted near centre, grey to dark grey, scattered, small, dark-based acervuli and large, globose, stromatic structures partially embedded in agar, these sometimes splitting apart and forming conidia. In reverse typically with pinkish-orange pigments, variable in intensity, in some isolates this colour partially hidden by more or less concentric bands of dark grey pigment. Conidia variable in shape, simple to broadly lobed, sometimes in groups, sometimes intercalary, about 7–17 × 4–9.5 μm. Perithecia not seen in culture.
Geographic distribution and host range: Confirmed only from New Zealand, but GenBank records suggest C. aotearoa also occurs in China (see below). In New Zealand this species is common on a taxonomically diverse set of native plants, as both a fruit rot and a leaf endophyte, and has also been isolated from leaves of several species of naturalised weeds.
All isolates in the C. gloeosporioides complex from New Zealand native plants studied here belong in the Kahawae clade, and most of these are C. aotearoa; a small number of leaf endophyte isolates from New Zealand native trees are C. kahawae subsp. ciggaro. The C. aotearoa isolates have been isolated as endophytes from symptomless leaves as well as from rotting fruit from native trees. Morphologically indistinguishable from isolates of C. kahawae subsp. ciggaro, this species is distinguished genetically with all genes sampled, except ITS. The GAPDH gene tree splits C. aotearoa into two well supported clades, but these do not correlate to any other features, either geographic or biological. Isolates associated with distinctive and common leaf spots on Meryta sinclairii, first recorded by Beever (1984), belong in this species. Whether isolates of C. aotearoa from other hosts are able to cause the same disease on Meryta is not known.Also in C. aotearoa are a range of isolates from weeds that have become naturalised in New Zealand. We assume that C. aotearoa is a New Zealand native species. It has a broad host range amongst native plants and has apparently jumped host to some weeds. It has never been found associated with cultivated plants or as a rot of cultivated fruit. Colletotrichum aotearoa may also occur in China. ITS sequences from isolates from Boehmeria from China (GenBank records GQ120479 and GQ120480) from Wang et al. (2010) match exactly a set of C. aotearoa isolates. ITS between-species differences within the C. gloeosporioides complex are very small, so this match needs confirming with additional genes. C. aotearoa was referred to as Undescribed Group 2 by Silva et al. (2012b).
Holotype: New Zealand, Auckland, Glen Innes, Auckland University campus, on Coprosma sp. incubated berries, coll. B. Weir C1282.4,30 Apr 2009, PDD 101076; ex-type culture ICMP 18537.
Other specimens examined: USA, Florida, Sarasota, on Vitis sp. leaf, coll. S. MacKenzie SS-Grape-12, 2002 (ICMP 18706); Hawai’i, Aiea, on Clidemia hirta leaf spot, coll. S.A. Ferreira & K. Pitz, 14 May 2010 (ICMP 18659, ICMP 18660, ICMP 18661, ICMP 18662, ICMP 18663).
Colonies grown from single conidia on Difco PDA 25 mm diam after 10 d, aerial mycelium grey, cottony, sparse, surface of colony with numerous small, dark-based acervuli with deep orange conidial ooze and scattered setae, in reverse more or less colourless except for the acervuli and masses of conidial ooze showing through. After 18 d numerous globose, pale walled protoperithecia developing near centre of colony. Conidia (16−)18−20(−26.5) × (4.5−)5.5−6 μm (av. 19.3 × 5.5 μm, n = 48), broad-cylindric, ends broadly rounded, longer conidia sometimes tapering slightly towards the base. Appressoria variable in shape, some simple, subglobose, but often with a small number of broad, irregular lobes. Perithecia mature after about 21 d, dark-walled, about 200–250 μm diam with short ostiolar neck, perithecial wall of 3–4 layers of angular cells 10–15 μm diam with walls thin, pale brown to brown. Asci 8-spored 60–67 × 10–14 μm. Ascospores (14–)15.5–19(–21.5) × 4.5–5.5(– 6.5) μm (av. 17.2 × 5.0 μm, n = 46), oblong-elliptic, tapering to rounded ends, widest point toward one end, in side view flat on one side, rarely curved and if so, then slightly.
Geographic distribution and host range: First reported from Clidemia, native to Panama, and subsequently introduced to Hawai’i as a pathogen of that host. Genetically matching isolates occur on native Vitis and Quercus spp. in Florida (see notes below).
Genetic identification: ITS sequences do not separate C. clidemiae from C. aotearoa. The two species are best distinguished using ACT, GAPDH, or GS. Notes: Isolates referred to C. gloeosporioides “f. sp. clidemiae” by Trujillo et al. (1986) were highly pathogenic to Clidemia, but not to the other species of Melastomataceae tested. No voucher cultures of the original isolates collected from Panama were kept, but recent specimens isolated from naturalised Clidemia hirta plants in Hawai’i with typical disease symptoms are genetically uniform and distinct within the Kahawae clade. Phylogenetic, biological, and morphological evidence support this fungus being described as a new species within the C. gloeosporioides complex. A fungus isolated from a Vitis sp. in Florida and referred to as “Glomerella cingulata native host” by MacKenzie et al. (2007), is genetically close to our isolates from Clidemia and is here referred to the same species. Data in MacKenzie et al. (2007) shows the same fungus occurs on both Vitis and Quercus in Florida. Micromorphologically the isolates from Clidemia and from Vitis that we examined are similar with respect to the size and shape of appressoria, conidia, and ascospores. They are distinct in cultural appearance, the cultures of the Vitis-associated fungus having aerial mycelium darker and more dense, and a faster growth rate. Similar variation in cultural appearance is present in several of the phylogenetically defined species that we recognise. Whether or not the Clidemia-associated isolates are biologically distinct from the Vitis- and Quercus-associated isolates from Florida requires pathogenicity tests to determine.
Holotype: USA, Hawai’i, Aiea, on Clidemia hirta leaf spot, coll. S.A. Ferreira & K. Pitz, 14 May 2010, PDD 101997; ex-type culture ICMP 18658.
Other specimens examined: Brazil, on leaves of Miconia sp., coll. R. Barreto RWB1054, 2009 (ICMP 18728). Germany, Berlin-Dahlem, on stem of Hypericum perforatum, Jun. 1937 (ex-holotype culture of Glomerella cingulata var. migrans – CBS 237.49 = ICMP 17922). New Zealand, Auckland, Waitakere Ranges, on leaves of Kunzea ericoides, coll. S. Joshee 5Kun3.10 (ICMP 18741); Auckland, Waitakere Ranges, on leaves of K. ericoides, coll. S. Joshee 7Kun5.2 (ICMP 18534); Auckland, Waitakere Ranges, on leaves of Toronia toru, coll. G. Carroll TOROTO3 (ICMP 18544); Te Puke, on Persea americana fruit rot, coll. W.F.T. Hartill, 19 Jan. 1989 (ICMP 18531); Te Puke, on P. americana fruit rot, coll. W.F.T. Hartill, 8 Feb. 1988 (ICMP 12952); Te Puke, on P. americana fruit rot, coll. W.F.T. Hartill, 28 Sep. 1991 (ICMP 12953). South Africa, Madeira, on Dryandra sp., coll. J.E. Taylor, 1 Apr 2001 (CBS 112984, as C. crassipes = ICMP 17932). Switzerland, on Dryas octopetala, coll. P. Cannon (IMI 359911 = CBS 12988 = ICMP 17931). USA, on Vaccinium macrocarpum leaves, coll. C.L. Shear, Apr. 1922 (authentic culture of G. rufomaculans var. vaccinii – CBS 124.22 = ICMP 19122).
Colonies grown from single conidia on Difco PDA 75–85 mm diam after 10 d for most isolates, the ex-holotype culture of G. cingulata var. migrans 48–49 mm diam. Aerial mycelium cottony, grey, dense, or in some isolates with dark stromatic masses and associated orange conidial ooze showing through mycelium from agar surface; in reverse agar with pinkish-orange pigments (6B4–7B4), irregular scattered black spots, and variable levels of development of overlying dark grey to green-grey pigments (4C2–5D4), these sometimes in discrete sectors. See notes below about a divergent growth form single ascospore cultures from perithecia in culture. Conidia form on dark-based acervuli, (12–)16–19.5(–29) × (4.5–)5(–8) µm (av. 17.8 × 5.1 µm, n = 214), cylindric, straight, apex rounded, often tapering slightly towards the base. Appressoria typically cylindric to fusoid in shape, deeply lobed. Perithecia numerous, forming tightly packed clumps, individual perithecia globose, small, about 250 µm diam, with a short ostiolar neck. Asci 55–100 × 10–12 µm, 8–spored. Ascospores (13.5–)17.5–20(–24) × (4–)4.5–5(–6.5) µm (av. 18.8 × 4.8 µm, n = 121), gently curved, tapering to quite narrow, rounded ends, widest point usually towards one end of the spore.
Geographic distribution and host range: Known from Australia, Germany, New Zealand, and South Africa. Both host and geographic range of the isolates we accept in C. kahawae subsp. ciggaro are broad. Genetic identification: ACT, CAL, CHS-1, GAPDH, TUB2, SOD2, and ITS sequences match those from C. kahawae subsp. kahawae. The two subspecies can be distinguished by GS sequences. Collectively, the two subspecies can be distinguished from all other species using ITS sequences alone.
Holotype: Australia, on Olea europaea, coll. V. Sergeeva UWS124, 1989, PDD 102232; ex-type culture ICMP 18539
Other specimens examined: Australia, Queensland, Brisbane, on Carica sp., coll. J.H. Simmonds 16347A2 (ICMP 1780, dried culture stored as PDD 28797); Queensland, Home Hill, on Persea americana, coll. L. Coates 22516, Feb. 1983 (ICMP 12564). Fiji, on Coffea sp. berry, coll. R. Gounder, Apr. 1988 (ICMP 18705).
Colonies grown from single conidia on Difco PDA 62–74 mm diam after 10 d, aerial mycelium either dense, cottony, uniform, grey, or with aerial mycelium lacking, towards centre of colony with numerous, small acervuli with dark bases and orange conidial ooze; in reverse cultures with copious aerial mycelium uniformly dark grey (1F2), those with little aerial mycelium having a pinkish brown (8B4) pigment within the agar, the dark bases of the acervuli and the colour of the conidial ooze visible through the agar. Conidia (12–)14.5–16.5(–21.5) × (3.5–)4.5–5(–6) µm (av. 15.5 × 4.8 µm, n = 96), cylindric, straight, sometimes slightly constricted near centre, ends broadly rounded. Appressoria about 6–12 µm diam., globose to short-cylindric, rarely lobed. Perithecia not seen.
Geographic distribution and host range: Known from Carica papaya and Persea americana from Queensland, Australia, and from Coffea berries from Fiji. Simmonds (1965) reported from Australia what he considered to be the same fungus also from Mangifera indica, Malus sylvestris, and “many other hosts”.
Holotype: Australia, Queensland, Ormiston, on Carica papaya, coll. J.H. Simmonds, Oct. 1965, IMI 117612. Epitype: Australia, Queensland, Brisbane, on Carica papaya, coll. J.H. Simmonds 11663C, Sep. 1965, epitype here designated PDD 28797; ex-epitype culture ICMP 1778.
Colonies grown from single conidia on Difco PDA 38–42 mm diam after 10 d, aerial mycelium sparse, cottony, pale grey, surface of colony dark, a more or less continuous layer of acervulus-like structure with deep orange brown conidial masses and numerous setae; in reverse dark purplish-black near centre of colony, dark olivaceous near the margin. Conidia (10–)14–16.5(–20.5) × (4.5–)5.5–6(–7.5) µm (av. 15.3 × 5.8 µm, n = 24), highly variable in size and shape, subglobose to long-cylindric, apex usually broadly rounded, small truncate scar at base. Conidiogenous cells 13–18 × 4–6.5 µm, cylindric to flask-shaped, tapering at apex to narrow, phialidic conidiogenous locus, wall at base often encrusted with dark brown material. Appressoria sparsely developed, cylindric to elliptic, simple; many putatively partially developed appressoria, similar in shape to those with dark and thick walls and also with an appressorial pore, but the wall remains thin and only slightly pigmented. Perithecia not seen.
Geographic distribution and host range: Known from throughout the geographic range of Salsola tragus (Berner et al. 2009), reported in nature only from Salsola spp.
Holotype: Hungary, on Salsola tragus, coll. D. Berner [specimen from plants inoculated with strain 96-067, originally collected I. Schwarczinger & L. Vajna on Salsola tragus from Bugac, near Kiskunsag National Park, 1996], BPI 878740; ex-holotype culture ICMP 19051.
New Zealand, Auckland, on Cordyline australis, coll. J.M. Dingley 6653, Mar. 1966 (PDD 30206; ICMP 5285); Taranaki, New Plymouth, Duncan and Davies Nursery, on C. australis × C. banksii leaf spots, coll. G.F. Laundon LEV 3343, 26 May 1969 (PDD 50634); Taranaki, New Plymouth, Duncan and Davies Nursery, on C australis × C. banksii leaf spots, coll. G.F. Laundon, 26 May 1969 (PDD 26775); Waikato, Cambridge, Anton Nursery, on C. australis leaf spots, coll. L.A. Houghton, 23 Jul. 1992 (PDD 61219; ICMP 19444).
Leaf spots oblong to elliptic in shape, up to about 1 × 2 mm, sometimes coalescing when close together on a leaf, pale grey and necrotic in the centre with a reddish margin; acervuli numerous, base pale to dark grey, with scattered, dark brown setae about 50–80 μm long. Perithecia not seen on infected leaves. Freshly isolated colonies on Difco PDA 50–55 mm diam after 10 d, margin slightly irregular and feathery, aerial mycelium lacking from ex-holotype culture, when present fine, cottony, pale grey, surface of colony dark towards the centre, pale pinkish orange (7A6) towards margin, conidia forming over all parts of culture, mostly not associated with well differentiated acervuli, setae not observed; in reverse purple (12E3) near centre, orange outside, sometimes with concentric rings of grey pigment. Conidiogenous cells cylindric, mostly 15–25 × 3.5–4.5 μm, towards centre of colony arranged in closely packed palisade, towards margin the conidiophores with a much looser structure, irregularly branched, conidiogenous loci at apex and often also at septa. Conidia (11.5– )14–17.5(–23.5) × (4–)5–5.5(–7.5) μm (av. 16 × 5.2 μm, n = 53), cylindric, ends broadly rounded, sometimes tapering towards basal end. Appressoria often narrow-cylindric, often tapering towards apex, sometimes irregularly lobed. Perithecia developing in small numbers in culture after about 4 wk, solitary, scattered across plate, dark-walled, globose with well-developed, tapering ostiolar neck. Asci (60–)65–75(–78) × (10–) 11(–12) μm (av. 69.6 × 11 μm, n = 5), cylindric to subfusoid, 8–spored. Ascospores (14.5–)15.5–16.5(–19) × (4.5–)5–5.5(–6) μm (av. 15.9 × 5.2 μm, n=18), broad-cylindric, ends broadly rounded, not tapering to the ends, in side view mostly flat on one side, often slightly curved.
Geographic distribution and host range: Known only from Cordyline spp. from New Zealand.
Genetic identification: ITS sequences do not distinguish C. ti from C. aotearoa. The two species can be distinguished using TUB2 or GAPDH. Notes: A member of the Kahawae clade, this fungus causes a leaf spot of Cordyline spp. in New Zealand. It is genetically distinct from C. cordylinicola, described from Cordyline fruticosa from Thailand. Based on the published description of C. cordylinicola (Phoulivong et al. 2011) the two fungi are morphologically similar. Inoculation tests using culture ICMP 5285 when freshly isolated (J.M. Dingley, unpublished data), showed it to be pathogenic to Cordyline australis, forming spots on leaves 2 wk after inoculation, but causing no symptoms on apple, even after wounding. Although only four of the specimens examined have been compared genetically, all of the cited specimens examined match in terms of associated symptoms and conidial size and shape. A specimen from Cordyline banksii (PDD 78360) has narrower conidia, forms perithecia on the infected leaves, and perhaps represents a different species. Specimens accepted here as C. ti were referred to Glomerella cingulata by Laundon (1972). The appearance in culture varies between isolates. The J.M. Dingley cultures, first isolated in the mid-1960’s, have dense, felted aerial mycelium and limited conidial production; one has a much slower growth rate than the more recent collections.
Holotype: New Zealand, Taupo, on Cordyline sp., coll. J.M. Dingley 65187, Sep. 1965, PDD 24881; ex-holotype culture ICMP 4832.

Click to collapse Cited scientific names Info

Click to collapse Metadata Info

497e7c6f-f66c-451a-8524-f83ff18743ab
reference
Names_Fungi
24 August 2012
24 December 2021
Click to go back to the top of the page
Top