


Groenewald, M.; Hittinger, C.T.; Bensch, K.; Opulente, D.A.; Shen, X.-X.; Li, Y.; Liu, C.; LaBella, A.L.; Zhou, X.; Limtong, S.; Jindamorakot, S.; Gonçalves, P.; Robert, V.; Wolfe, K.H.; Rosa, C.A.; Boekhout, T.; Ĉadež, N.; Péter, G.; Sampaio, J.P.; Lachance, M.-A.; Yurkov, A.M.; Daniel, H.-M.; Takashima, M.; Boundy-Mills, K.; Libkind, D.; Aoki, K.; Sugita, T.; Rokas, A. 2023: A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Studies in Mycology 105(1): 1-22.

Details
Groenewald, M.; Hittinger, C.T.; Bensch, K.; Opulente, D.A.; Shen, X.-X.; Li, Y.; Liu, C.; LaBella, A.L.; Zhou, X.; Limtong, S.; Jindamorakot, S.; Gonçalves, P.; Robert, V.; Wolfe, K.H.; Rosa, C.A.; Boekhout, T.; Ĉadež, N.; Péter, G.; Sampaio, J.P.; Lachance, M.-A.; Yurkov, A.M.; Daniel, H.-M.; Takashima, M.; Boundy-Mills, K.; Libkind, D.; Aoki, K.; Sugita, T.; Rokas, A. 2023: A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Studies in Mycology 105(1): 1-22.
10.3114/sim.2023.105.01
Article
Taxonomic concepts
Alloascoideomycetes M. Groenew., Hittinger, Opulente & A. Rokas
Cephaloascaceae L.R. Batra
Debaryomycetaceae Kurtzman & M. Suzuki 2010
Dipodascaceae Engl. & E. Gilg 1924
Diutina Khunnamw., Lertwatt., Jindam., Limtong & Lachance
Hyphopichia Arx & Van der Walt
Metschnikowiaceae T. Kamieński
Nakazawaea Y. Yamada, K. Maeda & Mikata
Phaffomycetaceae Y. Yamada, H. Kawas., Nagats., Mikata & Tats. Seki 1999
Saccharomycetales Kudrjanzev 1960
Saccharomycopsidaceae Arx & Van der Walt 1987
Schizoblastosporion Cif.
Sporopachydermia Rodr. Mir.
Trichomonascaceae Kurtzman & Robnett
Wickerhamomyces Kurtzman, Robnett & Baseh.-Pow.
Yarrowia Van der Walt & Arx
Descriptions
Abstract: The subphylum Saccharomycotina is a lineage in the fungal phylum Ascomycota that exhibits levels of genomic diversity similar to those of plants
and animals. The Saccharomycotina consist of more than 1 200 known species currently divided into 16 families, one order, and one class. Species in this
subphylum are ecologically and metabolically diverse and include important opportunistic human pathogens, as well as species important in biotechnological
applications. Many traits of biotechnological interest are found in closely related species and often restricted to single phylogenetic clades. However, the
biotechnological potential of most yeast species remains unexplored. Although the subphylum Saccharomycotina has much higher rates of genome sequence
evolution than its sister subphylum, Pezizomycotina, it contains only one class compared to the 16 classes in Pezizomycotina. The third subphylum of
Ascomycota, the Taphrinomycotina, consists of six classes and has approximately 10 times fewer species than the Saccharomycotina. These data indicate
that the current classification of all these yeasts into a single class and a single order is an underappreciation of their diversity. Our previous genome-scale
phylogenetic analyses showed that the Saccharomycotina contains 12 major and robustly supported phylogenetic clades; seven of these are current families
(Lipomycetaceae, Trigonopsidaceae, Alloascoideaceae, Pichiaceae, Phaffomycetaceae, Saccharomycodaceae, and Saccharomycetaceae), one comprises
two current families (Dipodascaceae and Trichomonascaceae), one represents the genus Sporopachydermia, and three represent lineages that differ in their
translation of the CUG codon (CUG-Ala, CUG-Ser1, and CUG-Ser2). Using these analyses in combination with relative evolutionary divergence and genome
content analyses, we propose an updated classification for the Saccharomycotina, including seven classes and 12 orders that can be diagnosed by genome
content. This updated classification is consistent with the high levels of genomic diversity within this subphylum and is necessary to make the higher rank
classification of the Saccharomycotina more comparable to that of other fungi, as well as to communicate efficiently on lineages that are not yet formally named.
Cited scientific names
- Alaninales M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Alloascoideomycetes M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Ambrosiozyma Van der Walt 1972
- Ascoideales J.H. Schaffn. 1913
- Candida Berkhout 1923
- Cephaloascaceae L.R. Batra 1973
- Debaryomycetaceae Kurtzman & M. Suzuki 2010
- Dipodascaceae Engl. & E. Gilg 1924
- Dipodascales M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Dipodascomycetes M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Diutina Khunnamw., Lertwatt., Jindam., Limtong & Lachance 2015
- Endomyces Reess 1870
- Hyphopichia Arx & Van der Walt 1976
- Metschnikowiaceae T. Kamieński 1899
- Nadsonia
- Nakazawaea Y. Yamada, K. Maeda & Mikata 1994
- Pachysolenaceae M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Phaffomycetaceae Y. Yamada, H. Kawas., Nagats., Mikata & Tats. Seki 1999
- Phaffomycetales Phaffomycetales 2023
- Pichiaceae
- Pichiales M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Pichiomycetes M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Saccharomycetales Kudrjanzev 1960
- Saccharomycetes G. Winter 1880 [1884]
- Saccharomycopsidaceae Arx & Van der Walt 1987
- Saccharomycotina O.E. Erikss. & Winka 1997
- Schizoblastosporion Cif. 1930
- Serinales M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Sporopachydermia Rodr. Mir.
- Sporopachydermiaceae M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Sporopachydermiales M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Sporopachydermiomycetes M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Trichomonascaceae Kurtzman & Robnett 2007
- Trigonopsidomycetes M. Groenew., Hittinger, Opulente & A. Rokas 2023
- Wickerhamomyces Kurtzman, Robnett & Baseh.-Pow. 2008
- Wickerhamomycetaceae Kurtzman, Robnett & Bas.-Powers 2008
- Yarrowia Van der Walt & Arx 1981
Metadata
1d007cb4-c8c7-4419-8e91-ecb15aff2abe
reference
Names_Fungi
17 June 2025
19 June 2025